skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meidt, Sharon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present 0.6–3.2 pc resolution mid-infrared (MIR) JWST images at 7.7μm (F770W) and 21μm (F2100W) covering the main star-forming regions of two of the closest star-forming low-metallicity dwarf galaxies, NGC 6822 and Wolf–Lundmark–Melotte (WLM). The images of NGC 6822 reveal filaments, edge-brightened bubbles, diffuse emission, and a plethora of point sources. By contrast, most of the MIR emission in WLM is pointlike, with a small amount of extended emission. Compared to solar-metallicity galaxies, the ratio of 7.7μm intensity ( I ν F770W ), tracing polycyclic aromatic hydrocarbons (PAHs), to 21μm intensity ( I ν F2100W ), tracing small, warm dust grain emission, is suppressed in these low-metallicity dwarfs. Using Atacama Large Millimeter/submillimeter Array CO(2–1) observations, we find that detected CO intensity versus I ν F770W at ≈2 pc resolution in dwarfs follows a similar relationship to that at solar metallicity and lower resolution, while the CO versus I ν F2100W relationship in dwarfs lies significantly below that derived from solar-metallicity galaxies at lower resolution, suggesting more pronounced destruction of CO molecules at low metallicity. Finally, adding in Local Group L-Band Survey 21 cm Hiobservations from the Very Large Array, we find that I ν F2100W and I ν F770W versus total gas ratios are suppressed in NGC 6822 and WLM compared to solar-metallicity galaxies. In agreement with dust models, the level of suppression appears to be at least partly accounted for by the reduced galaxy-averaged dust-to-gas and PAH-to-dust mass ratios in the dwarfs. Remaining differences are likely due to spatial variations in dust model parameters, which should be an exciting direction for future work in local dwarf galaxies. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Neutral atomic gas (H I) effectively traces galactic dynamics across mid to large galactocentric radii. However, its limitations in observing small-scale changes within the central few kiloparsecs, coupled with the often observed H Ideficit in galactic centers, necessitates the use of molecular gas emission as a preferred tracer in these regions. Understanding the dynamics of both neutral atomic and molecular gas is crucial for a more complete understanding of how galaxies evolve, funnel gas from the outer disk into their central parts, and eventually form stars. In this work we aim to quantify the dynamics of both, the neutral atomic and molecular gas, in the nearby spiral galaxies NGC 1512, NGC 4535, and NGC 7496 using new MeerKAT H Iobservations together with ALMA CO (2-1) observations from the PHANGS collaboration. We use the analysis tool3DBarolo to fit tilted ring models to the H Iand CO observations. A combined approach of using the H Ito constrain the true disk orientation parameters before applying these to the CO datasets is tested. This paper sets expectations for the results of the upcoming high-resolution H Icoverage of many galaxies in the PHANGS-ALMA sample using MeerKAT or VLA, to establish a robust methodology for characterizing galaxy orientations and deriving dynamics from combing new H Iwith existing CO data. 
    more » « less
  3. The property of star formation rate (SFR) is tightly connected to the amount of dense gas in molecular clouds. However, it is not fully understood how the relationship between dense molecular gas and star formation varies within galaxies and in different morphological environments. Most previous studies have typically been limited to kiloparsec-scale resolution such that different environments could not be resolved. In this work, we present new ALMA observations of HCN(1−0) at 260 pc scale to test how the amount of dense gas and its ability to form stars varies with environmental properties. Combined with existing CO(2−1) observations from ALMA and Hαfrom MUSE, we measured the HCN/CO line ratio, a proxy for the dense gas fraction, and SFR/HCN, a proxy for the star formation efficiency of the dense gas. We find a systematic > 1 dex increase (decreases) of HCN/CO (SFR/HCN) towards the centre of the galaxy, and roughly flat trends of these ratios (average variations < 0.3 dex) throughout the disc. While spiral arms, interarm regions, and bar ends show similar HCN/CO and SFR/HCN, on the bar, there is a significantly lower SFR/HCN at a similar HCN/CO. The strong environmental influence on dense gas and star formation in the centre of NGC 4321, suggests either that clouds couple strongly to the surrounding pressure or that HCN emission traces more of the bulk molecular gas that is less efficiently converted into stars. Across the disc, where the ISM pressure is typically low, SFR/HCN is more constant, indicating a decoupling of the clouds from their surrounding environment. The low SFR/HCN on the bar suggests that gas dynamics (e.g. shear and streaming motions) can have a large effect on the efficiency with which dense gas is converted into stars. In addition, we show that HCN/CO is a good predictor of the mean molecular gas surface density at 260 pc scales across environments and physical conditions. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. We present new JWST observations of the nearby, prototypical edge-on, spiral galaxy NGC 891. The northern half of the disk was observed with NIRCam in its F150W and F277W filters. Absorption is clearly visible in the mid-plane of the F150W image, along with vertical dusty plumes that closely resemble the ones seen in the optical. A ∼10 × 3 kpc2area of the lower circumgalactic medium (CGM) was mapped with MIRI F770W at 12 pc scales. Thanks to the sensitivity and resolution of JWST, we detect dust emission out to ∼4 kpc from the disk, in the form of filaments, arcs, and super-bubbles. Some of these filaments can be traced back to regions with recent star formation activity, suggesting that feedback-driven galactic winds play an important role in regulating baryonic cycling. The presence of dust at these altitudes raises questions about the transport mechanisms at play and suggests that small dust grains are able to survive for several tens of million years after having been ejected by galactic winds in the disk-halo interface. We lay out several scenarios that could explain this emission: dust grains may be shielded in the outer layers of cool dense clouds expelled from the galaxy disk, and/or the emission comes from the mixing layers around these cool clumps where material from the hot gas is able to cool down and mix with these cool cloudlets. This first set of data and upcoming spectroscopy will be very helpful to understand the survival of dust grains in energetic environments, and their contribution to recycling baryonic material in the mid-plane of galaxies. 
    more » « less
  5. Abstract We use 0.1″ observations from the Atacama Large Millimeter Array (ALMA), Hubble Space Telescope (HST), and JWST to study young massive clusters (YMCs) in their embedded “infant” phase across the central starburst ring in NGC 3351. Our new ALMA data reveal 18 bright and compact (sub-)millimeter continuum sources, of which 8 have counterparts in JWST images and only 6 have counterparts in HST images. Based on the ALMA continuum and molecular line data, as well as ancillary measurements for the HST and JWST counterparts, we identify 14 sources as infant star clusters with high stellar and/or gas masses (∼105M), small radii (≲ 5 pc), large escape velocities (6–10 km s−1), and short freefall times (0.5–1 Myr). Their multiwavelength properties motivate us to divide them into four categories, likely corresponding to four evolutionary stages from starless clumps to exposed Hiiregion–cluster complexes. Leveraging age estimates for HST-identified clusters in the same region, we infer an evolutionary timeline, ranging from ∼1–2 Myr before cluster formation as starless clumps, to ∼4–6 Myr after as exposed Hiiregion–cluster complexes. Finally, we show that the YMCs make up a substantial fraction of recent star formation across the ring, exhibit a nonuniform azimuthal distribution without a very coherent evolutionary trend along the ring, and are capable of driving large-scale gas outflows. 
    more » « less
  6. ABSTRACT Understanding the spatial distribution of metals within galaxies allows us to study the processes of chemical enrichment and mixing in the interstellar medium. In this work, we map the 2D distribution of metals using a Gaussian Process Regression (GPR) for 19 star-forming galaxies observed with the Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT–MUSE) as a part of the PHANGS–MUSE survey. We find that 12 of our 19 galaxies show significant 2D metallicity variation. Those without significant variations typically have fewer metallicity measurements, indicating this is due to the dearth of $${\rm H\, {\small II}}$$ regions in these galaxies, rather than a lack of higher-order variation. After subtracting a linear radial gradient, we see no enrichment in the spiral arms versus the disc. We measure the 50 per cent correlation scale from the two-point correlation function of these radially subtracted maps, finding it to typically be an order of magnitude smaller than the fitted GPR kernel scale length. We study the dependence of the two-point correlation scale length with a number of global galaxy properties. We find no relationship between the 50 per cent correlation scale and the overall gas turbulence, in tension with existing theoretical models. We also find more actively star-forming galaxies, and earlier type galaxies have a larger 50 per cent correlation scale. The size and stellar mass surface density do not appear to correlate with the 50 per cent correlation scale, indicating that perhaps the evolutionary state of the galaxy and its current star formation activity is the strongest indicator of the homogeneity of the metal distribution. 
    more » « less
  7. ABSTRACT We use new HCN(1–0) data from the ACA Large-sample Mapping Of Nearby galaxies in Dense gas (ALMOND) survey to trace the kpc-scale molecular gas density structure and CO(2–1) data from the Physics at High Angular resolution in Nearby GalaxieS–Atacama Large Millimeter/submillimeter Array (PHANGS–ALMA) to trace the bulk molecular gas across 25 nearby star-forming galaxies. At 2.1 kpc scale, we measure the density-sensitive HCN/CO line ratio and the star formation rate (SFR)/HCN ratio to trace the star formation efficiency in the denser molecular medium. At 150 pc scale, we measure structural and dynamical properties of the molecular gas via CO(2–1) line emission, which is linked to the lower resolution data using an intensity-weighted averaging method. We find positive correlations (negative) of HCN/CO (SFR/HCN) with the surface density, the velocity dispersion, and the internal turbulent pressure of the molecular gas. These observed correlations agree with expected trends from turbulent models of star formation, which consider a single free-fall time gravitational collapse. Our results show that the kpc-scale HCN/CO line ratio is a powerful tool to trace the 150 pc scale average density distribution of the molecular clouds. Lastly, we find systematic variations of the SFR/HCN ratio with cloud-scale molecular gas properties, which are incompatible with a universal star formation efficiency. Overall, these findings show that mean molecular gas density, molecular cloud properties, and star formation are closely linked in a coherent way, and observations of density-sensitive molecular gas tracers are a useful tool to analyse these variations, linking molecular gas physics to stellar output across galaxy discs. 
    more » « less
  8. Abstract We compare mid-infrared (mid-IR), extinction-corrected H α , and CO (2–1) emission at 70–160 pc resolution in the first four PHANGS–JWST targets. We report correlation strengths, intensity ratios, and power-law fits relating emission in JWST’s F770W, F1000W, F1130W, and F2100W bands to CO and H α . At these scales, CO and H α each correlate strongly with mid-IR emission, and these correlations are each stronger than the one relating CO to H α emission. This reflects that mid-IR emission simultaneously acts as a dust column density tracer, leading to a good match with the molecular-gas-tracing CO, and as a heating tracer, leading to a good match with the H α . By combining mid-IR, CO, and H α at scales where the overall correlation between cold gas and star formation begins to break down, we are able to separate these two effects. We model the mid-IR above I ν = 0.5 MJy sr −1 at F770W, a cut designed to select regions where the molecular gas dominates the interstellar medium (ISM) mass. This bright emission can be described to first order by a model that combines a CO-tracing component and an H α -tracing component. The best-fitting models imply that ∼50% of the mid-IR flux arises from molecular gas heated by the diffuse interstellar radiation field, with the remaining ∼50% associated with bright, dusty star-forming regions. We discuss differences between the F770W, F1000W, and F1130W bands and the continuum-dominated F2100W band and suggest next steps for using the mid-IR as an ISM tracer. 
    more » « less
  9. null (Ed.)